Sparse representation of terrains for procedural modeling

نویسندگان

  • Eric Guérin
  • Julie Digne
  • Eric Galin
  • Adrien Peytavie
چکیده

In this paper, we present a simple and efficient method to represent terrains as elevation functions built from linear combinations of landform features (atoms). These features can be extracted either from real world data-sets or procedural primitives, or from any combination of multiple terrain models. Our approach consists in representing the elevation function as a sparse combination of primitives, a concept which we call Sparse Construction Tree, which blends the different landform features stored in a dictionary. The sparse representation allows us to represent complex terrains using combinations of atoms from a small dictionary, yielding a powerful and compact terrain representation and synthesis tool. Moreover, we present a method for automatically learning the dictionary and generating the Sparse Construction Tree model. We demonstrate the efficiency of our method in several applications: inverse procedural modeling of terrains, terrain amplification and synthesis from a coarse sketch.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

RiverLand: An Efficient Procedural Modeling System for Creating Realistic-Looking Terrains

Generating realistic-looking but interesting terrains quickly is a great challenge. We present RiverLand, an efficient system for terrain synthesis. RiverLand creates a realistic-looking terrain by first generating river networks over the land. Then, the terrain is created to be consistent with the river networks. In this way, the terrains created have a proper drainage basin, an important feat...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Modeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)

Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of  the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and  land surface temperature (LST) calculation. However, their spatial resolu...

متن کامل

Terrain synthesis using curve networks

We present a procedural technique for the controllable synthesis of detailed terrains. We generate terrains based on a sparse curve network representation, where interconnected curves are distributed in the plane and can be procedurally assigned height. We employ path planning to procedurally generate irregular curves around userdesignated peaks. Optionally, the user can specify base signals fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016